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SHAPE EVOLUTION OF A SUBLIMING SURFACE

HEAT FLUX

F. W. SPAID*, A. F. CHARWATY, L. G. REDEKOPP} and R. ROSENS§
University of California, Los Angeles, California, U.S.A.

(Received 22 January 1970 and in revised form 15 July 1970)

Abstract—An investigation of two-dimensional, unsteady heat conduction in a solid with phase change at
an exposed boundary has been conducted, including a perturbation analysis and numerical computations.
The zero-order solution from which the perturbation analysis was developed is the steady, one-dimensional
recession of a solid slab in response to a uniform heat input. The analysis has been carried out for small values
of (8/b)?, where & is the characteristic length for the temperature distribution in the solid, and b1is the length
scale of the lateral nonuniformity of the heat flux.

A finite-difference analog of the governing equations was programmed, for the purpose of providing
results for large nonuniformity in both heat flux and surface shape. Sample results are presented for two
types of heat inputs: (a) one in which the spatial variation was sinusoidal, and (b) one which consisted of
two constant levels connected by a half-wave cosine transition. Good agreement was obtained between
predictions of the first-order analysis and results of the numerical computation for small times. For relatively
large values of time, the computed surface shapes were found to become self-preserving. In case (a) groove
shapes and depths tended to become time-independent, and in case (b), a straight ramp of constant slope
tended to form. The mass loss of the solid was found to be smaller when the slab was subject to spatially
uniform heating than when it was heated uniformly with the same average intensity (when lateral conduction
was not neglected). For a given heating, the mass loss with lateral conduction was always less than when
lateral conduction was neglected.

An empirical correlation of the numerical results shows surface slopes or grooves depths to be propor-
tional to a length scale which is associated with the nonuniformity in the heat flux, and its magnitude.
The characteristic time for the appearance of surface features is (8b)/x, where o is the thermal diffusivity

of the solid.

NOMENCLATURE H, reference length based upon steady,

b, length scale of lateral heat flux gra- one-dimensional recession, equation
dients; (39);
Cpr specific heat ; 7, time index ;
d, lateral half-width of the body; k, thermal conductivity;
F, dimensionless heat flux function; L, heat of sublimation ;
AF,  FoaxFuins m, lateral coordinate index ;
M, maximum value of m;
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heat flux per unit area per unit time;



dimensional temperature

L. dimensional sublimation tempera-
ture;

to- slab temperature for y — o ;

T. dimensionless temperature, equation
(8):

U, dimensionless temperature used in the
numerical analog:

V. dimensionless temperature used in
the numerical analog:

X, lateral coordinate :

¥, vertical coordinate ;

z, transformed  vertical coordinate,
equation (7);

o thermal diffusivity ;

i sublimation parameter,equation (8);

7, thermal aspect ratio. equation (8);

0, thermal penetration depth, equation
(8):

n, dimensionless vertical coordinate
(z,0):

& dimensionless lateral coordinate (x/b);

6. dimensional time:

oy mass density;

Ay, 45, functions derived from solution of
equation (18a), see equations (20)
and (22):

T, dimensionless time variable, equation
(8):

At, dimensionless time increment ;

An, dimensionless vertical distance incre-
ment ;

Aé. dimensionless lateral distance incre-
ment.

I. INTRODUCTION
HEAT transfer to a body with phase change at the
exposed boundaries (sometimes referred to as
Stefan’s Problem) has attracted the attention of
numerous investigators over the past century.
Recently the development of ablative heat sinks
for thermal protection of hypersonic vehicles
has given the problem considerable impetus,
but there are also other less publicized applica-
tions of considerable interest. For instance, the
problem of the melting of polar ice-caps was
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one that stimulated the present study.

The first important exact solution to a phase
change problem was given by Neumann in
1860 [1]. He considered the solidification of a
semi-infinite slab existing initially in the liquid
state at constant temperature {, > 0. For all
times > 0, the exposed surface (y = 0) was
maintained at a temperature ¢ = 0, and the
location of the solid-liquid interface was de-
termined as a function of time. The solution
satisfying conditions for all time was found
to be s(6) ~ /6. Various other solutions have
subsequently appeared in the literature and are
discussed in the excellent reviews by Muehl-
bauer and Sunderland [2], by Boley [3], and
by Bankoff [4]. The special difficulty associated
with the phase change problem is the non-
linearity introduced by the existence of a moving
boundary. This requires that special solutions
be obtained for each different set of boundary
conditions. These difficulties are compounded
by the nonexistence of similarity conditions for
situations of an arbitrary heat flux on the
moving boundary or of an arbitrary initial
temperature distribution within the body.

Nearly all of the previous work has been
done for one-dimensional cases where condi-
tions are laterally uniform or where the influence
of lateral temperature gradients and surface
heat flux nonuniformities is neglected. The
only two-dimensional treatment known to the
authors is the analytic solution given by Boley
and Sikarskie [5] for the initial sublimation
rate of a semi-infinite strip under a spatially
varying (Q(x) ~ cos x) heat flux. The essential
feature of their method of analysis is that it
deals mathematically with a fictitious body,
whose shape is unchanged and is identical with
that of the body before any phase transformation
occurs. The fictitious body is exposed to an
imaginary heat flux whose magnitude is adjusted
so that it satisfies the appropriate interface con-
ditions. In this formulation the original boun-
dary value problem is replaced by an ordinary
integro-differential equation which was solved
in series form, with results obtained for the
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leading terms in the series. However, the surface
recession history for long sublimation times and
for realistic surface heat transfer distributions
has not been examined. It is the objective of this
effort to study surface recession histories when
the incident heat flux is spatially nonuniform
and nonsteady, and to evaluate the role of
lateral conduction.

II. FORMULATION OF THE PROBLEM
The equation describing unsteady, two-di-
mensional heat conduction in a body with
temperature-independent physical properties is

ot o(< o o

86— “\ox?  oy?)
This equation is to be solved subject to the
following initial and boundary conditions. The

initial temperature distribution within the body.
and the initial shape of the surface are prescribed -

(2a)
(2b)

(1)

1x, y,0) = t{x, y)
5(x, 0) = s{x).

The initial recession rate must be consistent
with the energy balance at the exposed boundary.
Boundary conditions for the problem are

tx,y,0)=t, as y— o (3a)

(infinite slab in the direction normal to the
surface) and

ot

— =0 at

ox
(insulated lateral boundaries at x = +d). An
additional condition is obtained from an energy
balance at the exposed surface, the simplest form
of which is

Xx=*d (3b)

0 )= — k2

hL.
n +m

4)

5

where Q,(x, ) is the component of heat flux
normal to the local surface. For the sake of
convenience, (4) is rewritten in terms of the
incident heat flux per unit area and time, Q(x, 6),
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normal to a plane y = constant.
0(x,0) = — k(~1t,5, + t,)|y=sx.0)
+ (1 + s3) pLs, 5

where subscripts denote differentiation. This
relation models a radiant heat input independent
of the instantaneous surface shape. If convective
heat- and mass-transfer coupling were included,
an additional term would be added accounting
for the heat blockage effect introduced by the
blowing at the gas-solid interface. Also, the
surface shape would be coupled with the heat
input function because of its influence on the
nature of the boundary layer.

Coupled with the energy balance (5), one
must make a statement regarding the phase
change kinetics. For simplicity, a fixed sublima-
tion temperature is used here. This condition is

§=0 when 1x,s 0) <t

and (6)

§>0 when t(x,s0) =1t,

where the magnitude of s is computed from (5)
and ¢, is prescribed.

Statement (6) together with relation (5) is
sufficient to completely describe the boundary
condition at the exposed moving surface.

The preceding is a formulation in terms of
fixed coordinates (x,y) wherein the exposed
surface moves relative to the coordinate axes.
Inherent in this formulation is the difficulty of
applying boundary condition (5) at the a priori
unknown location s(x, 8). In certain circum-
stances this difficulty can be avoided by trans-
forming to a coordinate system moving with
the receding boundary. This type of transforma-
tion in phase change problems was first intro-
duced by Landau [6] for the case of one-
dimensional conduction in a slab with uniform
incident heat flux. In this spirit we introduce
the coordinate transformation

z=1y — s(x,0), X = X,

(7
as illustrated in Fig. 1. It is to be emphasized.
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however. that the difficulties associated with
the existence of a moving boundary will not be
eliminated by working in the transformed (x, y)
plane. The undesirable problem of applying a
boundary condition at an unknown position is
avoided at the expense of transferring the essen-
t1al nonlinearity of the problem directly to the
governing partial differential equation for the
temperature field within the body. In view of
the numerical solutions to be obtained subse-
quently, it was thought advisable to work in the
transformed (x, z) plane rather than the (x.y)
plane in order to avoid the complications which
arise from the motion of a boundary across a
grid lattice.

Surface
of solid

F1G. 1. Definitions of coordinate systems.

Applying the transformation (7) to the fore-
going set of equations and simultaneously
introducing the nondimensional quantities

. N z O S s
= . Ho= = T = <.
< b I o f 0 0
p=d ol 0
h t, — to b
c(ty — 1) . L
f= L P (8a)
L Qo
with the heat input represented by
0 .
é; = F(¢ 1) (8b)

the partial differential equation (1) becomes

T, = (5. = 78T, + (

+ 93Ty = 25,T),

I+ 23S T,
)
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where subscripts denote differentiation. The
transformed boundary conditions are

TE.nt)=0 as n -« (10a)

and

T.=0 at &= +d, (10b)

the latter condition applying if the body is
bounded laterally by installed walls at = +d".
Writing the surface boundary condition in terims
of the transformed variables yields

Fléo= ~/3[—}’ZS§T¢ + (1 + ','ZS,;E)'I,‘,]QO'r

+(1+ 72898, (D
Coupled with this relation is the phase change
law which transforms to

§S,=0 when T(.0.71)<1

and (12)

S, >0 when T(,.0.7) = 1.
Ti.,0.) < 1

The initial conditions consist of the specifi-
cation of an initial surface shape and tempera-
ture field and application of the surface boun-
dary condition (11) at 1 =0. The scaling
quantities ¢, — t, and Q, are introduced to
make the functions T and F of order unity.

The quantity ¢ defined in (8) is a measure of
the thermal penetration depth resulting from a
uniform steady heat inpul rate of magnitude Q,
applied at the surface of a body with physical
properties p. « and L. and is obtained from the
solution for steady. one-dimensional recession.
The quantity b is a length characterizing the
lateral scale of the spatial nonuniformity in the
incident heat flux. The use of these two parameters
to nondimensionalize the normal and lateral
derivatives, respectively, has essentially stretched
the respective coordinates in the (&, #) plane
such that gradients of the dependent variables
are of equal importance. As a consequence of
the use of two characteristic lengths in the non-
dimensionalization, a thermal aspect-ratio para-
meter y appears in the equations. It is clear that
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if the spatial gradients of the applied heat flux
(scaled by b) are of the same order as the thermal
penetration depth (scaled by §), that is, when 7 is
of order unity, lateral conduction is significant

and cannat he naclactad in datermining tha
Al LallliUul UL LIVEIVUIRAL Ul ULV HUMGIEE L

surface recession rate.

Because of the nonlinear nature of equation (9)
and since there exists no similarity variable to
reduce it to an ordinary differential equation,
two methods of solution have been utilized.
The first is a perturbation analysis. The second
approach is a finite-difference solution of the
problem which was used to obtain numerical
solutions for several different sets of initial and
boundary conditions.

III. PERTURBATION ANALYSIS
When the incident heat flux is nearly uniform
over the surface of the body, the thermal aspect
ratio y becomes very small. The parameter y
appears in the equations as 2. This suggests an
expansion of variables in terms of this small
parameter :

T =T 1) + y* TV 1, 1)
+ T E ) + ...,
S = SOY7) + y2SUNE, 1)
+ y*SE, 1) + ....and

F=14+9FY% 0+ y*FP¢E D+ ... (13)

For simplicity, we restrict the analysis to the
class of problems for which the surface is initially
flat, S(0) = SA&. 0) = S,(& 0) = Oand all higher
order terms in T, S and F, are zero for t < 0.
Physically, this means that for t < O there is
steady recession of a slab in response to a
spatially uniform, steady heat input. At t = 0,
a spatially varying perturbation is added to the
heat input function. Substituting the expansions
for T, S and F, into the differential equation (9)
and the initial and boundary conditions given in
equations (10), (11a) and (12), terms of zero order
yield

TO — SOTO _ T® — 0,
$°(0) = 0,
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T%%%, 1) = 0asn — oc,
T9%0, 1) = 1,and
1 = —BTO0) + 5 (14)
The zero-order solution is
T = exp (— )
with (15)
o _ | _
T ﬂ + 1
Terms of order 7? yield
T — SOTW — TH = SOTO (16a)
TW@, 0) = TUO, 1) = TW(ec, 1)
= S(0) = 0,and (16b)
FIE 1) = —BTIO) + S, (16¢)
Terms of order 7* yield
Ttk 2y S(rO)Tan) — T:ﬁ’) — S(r“T;l)
4 (S — SINTO - T, (17a)
T, 0) = T2(0, 1) = T¥(oz, 1)
= §2(0) = 0, and (17b)
F? = —pT® + S, (17¢)

The Laplace transform of equations (16) (trans-
formed variables are denoted by an asterisk)
after substitution for T from (15) is
pT(l)* _ S(zO)Ti,“* _ Ti;i;)*
= SU*S® exp (—S”), and
I:(l)* — ——ﬂTU)*(O) + Stl)*
n Tt
The solution for the transformed temperature

field. which may be obtained by Green’s
function techniques, is

(18a)
(18b)

TH* — Sﬁ,‘ )Sioj
p
x [exp(—Ziy) —exp(=SP].  (19)
where
o)
Ay = 5 + P+ T ) (20)
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The boundary condition corresponding to the
energy balance at the surface has not yet been
satisfied. It is possible to solve an inverse prob-
lem by specifying S and determining the
corresponding value of F'"* from equation
(18b). A direct solution which is valid for small
values of time can be obtained by differentiating
equation (19) and substituting into (18b), which
gives

F(l)*

(1 _
5 1+ BS9),

(21)

where

S

S(O)2
Pl ) e

The first-order heat input function F'*) may
be expanded as a power series in T,

FY = FOH()y + Fr + FP2 +

Ay =

(23)

where H(z) is the Heaviside unit function. If we
substitute the Laplace transform of this expan-
sion into equation (21) and expand the result as

a power series in p~ !, we have

Sx = Flip=1 F(O”ﬁf- lpAs/z

+ [Fm(/fﬁ(/f;)_% Fg“] pE - B—fj Fi)
SR Fm] o +{(ﬁfl)2

x [Fa"ﬁ%ﬂ—%) ¥ FO + %)]

+ 2F§”}p‘3 + 0(p~""?). (24)

This expression can be inverted term-by-term

yielding
oo v )
BB + 3)

+ F‘f)]r ~ T+ f : [Fg’

B+ 12
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BB (”Jgr‘f B
U R KON
X{<ﬁ+1)2 oy Y
2
+ 2F(”} 5+ 0 (25)

The restriction of the first-order solution to
small values of t [equation (23)] is not particu-
larly severe, since for most classes of problems
this is already implied by the requirement
that the perturbation of the initial surface shape
be small [equation (13)]. For t approaching
zero, the surface recession rate is given to order
7* by

1+ y?Fy’

OB+ 1

By*Fy’

311 + O(r1/2).

(26)

The first term in equation (26) is exactly the
steady-state recession rate corresponding to the
perturbed heat input. S, is thus initially larger
than the steady-state value. The conduction
process associated with a characteristic time is
long compared to the instantaneous increase in
F at T = 0. As a result, conduction initially has
no effect, and the increased heat input is
reflected entirely in vaporization of the surface
material.

It is interesting to note that the problem which
we have posed, to first order in y% corresponds
to a one-dimensional unsteady problem. There-
fore, the results can be applied to a situation in
which the initial surface is not flat by adding
S49) to surface shapes obtained by integrating
(25).

It is possible to use the solution for StV to
obtain a first-order solution for the temperature
field. If equation (24) is substituted into equation

(19) and the result is expanded in a power series
~1

in p~*! and inverted term-by-term, the first few

terms in the expansion for the temperature field

are

o _ Folexp [=n28+ D1 {( gj)
p+1 2
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x erfc (2\/ ) n\/(%) exp (—n?/41)

[8([31 v Fﬁ—f] (41)3/? erfc {d¢
niyt

—exp[—n/2(f + 1 -\ —
pL—n2p )][ (ﬁ+1)
4 732
—— . (27
<3 ﬁ}u } @)
An inverse solution for the temperature field
corresponding to a constant value of S and
the corresponding value of the heat input

function, may be obtained in a similar manner
using equations (19) and (21). The results are

S exp [—n/2(8 + 1)] [(T . ﬁ)
p+1 2

x erfc (2*:;'5) - n\/(%) exp (—n?/41)

0

TV =

’73/2
@+ 1y j erietdt -
nive
texp[—n/28+ 1) + :l (28)
and
(1) . qll) 2p <3> _ __B
F7 =5 l:l+(/3+1) = T T
B kil s/2 ]
+ B T Loy (29
68 + 17 Vn i )

In order to examine the manner in which the
¢-derivatives influence the solution, the expres-
sion for F'» was found for the case when SV
and S are constant for t > 0. Using the tech-
nique already outlined in the preceding, the
solution thus obtained is

2882 11 FSD
F@ = §2) < (F) T
. +ﬁ+1\/<n> B+ 2"
4ﬁ S(Z) (1)
N [8([3 T TS
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1 S(rl)z S(ﬁlé) )] 32
_1 30
2<(B+1)2+B+1 g (30)

As expected, the second-order solution is similar
in character to the first-order solution. Perhaps
the most interesting aspect of this result is
that the ¢-derivatives appear only in terms of
order y*.

04—
7
V4
Fe1%1/8[1+ cos (af /) H( 1) )

= o3 LFesvsitcostzemals \/

u ; Y

- v

¢ 78

< L 2 7

¢ o2 e BH 7

\Lx; 7(1].0) -] i

[ 4

[

B=0°5

d ol Numerical,y =0-5 —~~—
Numerical,y =0 —-—-
Perturbation
analysis

) | 1 L J
o] 05 1-0 I-5 20

T

F1G. 2. Comparison of first-order analysis and numerical
computation.

Figure 2 shows a comparison between calcu-
lations using the first-order solution to terms
in 72, [see equation (25)] and results of numerical
integrations of the full equations. The calcula-
tions were performed for a sinusoidal heat input
distribution to a two-dimensional conducting
slab. In case A, the perturbation was applied as a
step-function in 7, and in case B, the amplitude
of the perturbation was a linear function of 7.
In each case, a wavy surface developed, with the
bottom of a groove corresponding to the maxi-
mum and a ridge to the minimum value of F.
The ordinate AS, is the groove depth, or
Smax—Smine The value of the parameter 8, which
is the ratio of the energy absorbed in heating the
material to the sublimation temperature to the
heat of vaporization, is 0-5 for this example, and
for all of the subsequent calculations. This
value is representative of the larger values of 8
which would be encountered in physical situa-
tions.
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Numerical results are shown for y = 0-5 and
for y = 0(no lateral conduction) for comparison
with the predictions of the analysis. The range
of validity of the time-expansion to t? can be
evaluated by comparing the results of the
analysis with the numerical results for y = 0.
The use of the first-order solution is equivalent
to assuming that the recession is locally one-
dimensional and unsteady, corresponding to the
local value of F. This situation is achieved in the
numerical calculation by setting y = 0. Lateral
conduction effects during the initial time period
considered may be evaluated by comparing
the numerical results for y = 0 and y = 0-5.

IV. NUMERICAL METHOD
In order to obtain results in which effects of
lateral conduction are of first-order importance,
a numerical method of solution was constructed.
The particular finite difference analog of the
governing equations used here is an adaption
of a method which was first employed by Clark
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and Barakat [7] for a linear boundary value
problem with stationary boundaries. The method
uses a multi-level finite-difference representa-
tion of the differential equation, where the
temperature is given by

Thow=3UL  + Vi) (31)
The superscript j refers to the time level, and the
subscripts, m and n, identify the mesh point.
The U}, , and V] , each satisfies the complete
difference equation and boundary conditions,
but the calculations to determine U}, , begin at
m = n =0 and proceed in the direction of in-
creasing m and n, and the calculations to deter-
mine V}, , begin at M. N, the maximum values
of m and n. and proceed in the direction of
decreasing m and n. The averaging of U}, , and
Vi, . to obtain T, , is done in order to obtain a
high level of accuracy. The finite-difference
representations of the derivatives determine
the stability properties of the system. Examples
of difference equations of the U part of the tem-

perature field are included here as follows:

ab U£"+"1 - Uf" n
ot T At
U 1| Uhnst = Upin Unin = Ut
on ~ 2 An, An_ ’
821] 2 y,l;l",;}. 1,,— U:n,n b’{n+"1 7 U5n+n1_1
G T An. + An_ An An_ ‘
and
U UL - U U
ogon = 4 AZ_An_
L Uhsin = U = Ul + Unly
Ag+An-
+.U_£"_"f,l,,,_ U"‘l’ - Ur—l n+ 1 + U m=1,n
Aé An,
Uit 1ne1 = UanEl An_ Uponsr + Ufn.,,]_ a2
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The notation A&, refers to the mesh spacing
between m and m + 1; A¢_ refers to the spacing
between m and m — 1. The values of Ay, and
An_ are determined in the same manner.
These expressions were substituted into the
differential equation (9) and solved for Ui'),
explicitly. The space and time derivatives of
the surface position were evaluated following
the same scheme. The quantity S;* ! is computed
from the boundary condition (11) at the time

level j. In difference form, (11) becomes

. : AtFiti At . .
sitt =i+ - AFn_ L pBTqy
m m (1 + stg)fn ﬁAnO m.t m,O)
vHSY. At .
PrSon BT (g T (33

S+ SHRAL,
The quantities A, and TJ ., , are used de-
pending on whether S, s 0. The quantity
An, is the vertical grid spacing between the
surface (n = 0) and the first lattice point the
body (n = 1).

Coupled with (33) is the phase change condi-
tion of (12) which, in difference form, becomes

Sit' =8I when Ti, <1
and (34)

Si*'>Si when T, ,=1

Essentially the same finite difference approxi-
mation was used for the V part of the tempera-
ture field.

Two boundary conditions were investigated.
For an insulated boundaryat m = Oand m = M
we require that the dependent variables be
symmetric about the lateral positions m = 0
and m = M. For a body which is infinite in the
lateral direction, the dependent variables are
extrapolated parabolically. This is accomplished
by writing

) i AE_ Y
XL = X} 1+ —)-XJ —
1.n 0,11( + Af.,.) l.nAé+ (358)
along m = 0 and
; ; A A
Xfw“,n:Xfw,n(l +Afi>— M_l,ni
(35b)
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along m = M, where X represents T or S. To
satisfy the condition of infiniteness in the 5
direction the values of V at n=N + 1 are
determined from*(35b) where Ay, and An_
replace AZ, and A _, respectively. Additionally,
in order to initiate the numerical calculation at
any time step (j + 1), the boundary values U/*!
at m= —1and V/*!' at m =M + 1 and also
along n = N + 1 must be known. These quanti-
ties are obtained by extrapolating forward in
time using the expression

Xin =2X], = Xil.. (36)

This computational procedure is explicit
and unconditionally stable when applied to
the conventional heat conduction equation, at
least for several common types of boundary
conditions [7]. The stability of the present
method and of a more conventional explicit
method (in which the time derivatives are
approximated by a forward difference ratio and
the space derivatives are approximated by
central difference ratios evaluated at the previous
time step) were studied by the method of Von
Neumann, which is described by Richtmyer [8].
The choice of stable grid spacing and time step
were found to depend upon 7y, the surface
recession velocity, surface slope, and surface
curvature. Large values of any of these quantities
would tend to cause instability. The maximum
time step corresponding to stable computation
for the conventional analog was predicted to be
very small, implying prohibitively long compu-
tation times. The analysis indicated that the
stability of the method of Clark and Barakat
would be much less sensitive to the choice of
time step, and that a substantially larger time
step could be used with this method than could
be used with the conventional one.

The finite difference formulation of the prob-
lem was programmed in Fortran 1V, and com-
putations were performed on the IBM 360
Model 75 and Model 91 of the UCLA Campus
Computing Network.

Several one-dimensional, steady-state com-
putations were made as check-out cases. With a
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mesh spacing, An, of 0-1, a maximum # of 60,
and time steps, Ar, of 0-00375-0-09, the compu-
ted value of the recession rate remained within 1
per cent of the exact solution for runs of 100-300
time steps. The error did not show a tendency
to increase with time.

V. DISCUSSION OF RESULTS

The numerical program is very flexible and
capable of accepting a wide variety of steady
or unsteady heat flux distributions, arbitrary
initial shapes of the ablating surface, and pre-
heat conditions. The results presented herein
pertain to a special situation which was selected
because it illustrates the influence of lateral
conduction on the problem in a relatively
simple and straightforward manner.

In all cases the initial surface is flat and the
temperature distribution in the (semi-infinite)
slab corresponds to steady-state ablation under
the influence of a uniform heat input (F = 1).
These initial conditions exclude the transient
period of preheating the surface up to ablation
temperature. At time ¢t = 0, the heat input is
impulsively changed to a prescribed one-dimen-
sional distribution and remains fixed thereafter.
Thus the heating is steady (for > 0) but spatially
nonuniform, while the surface recession is.
in general, both unsteady and nonuniform.
The heat input function prescribes the energy
input per unit projected area, not per unit actual
area of the surface; as mentioned before, this
situation corresponds to radiation.

Two heat input distributions were investi-
gated. The first one is a cosinusoidal transition
between two constant levels. Figure 3 shows a
typical calculated history of recession of the
ablating surface for a case in which y = 1 com-
pared to the case in which y = 0 (no lateral con-
duction). The second heat input distribution is
sinusoidal, for which typical surface recession
histories are shown in Fig. 4. It is clear from
these figures that an increase in lateral diffusion
of heat results in smoothing out the shape of the
receding surface.
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F1G. 3. Shape evolution of an infinite slab subjected to a
two-level heat flux.

[4
FI1G. 4. Typical surface profiles, periodic heat flux.
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The situation illustrated in Fig. 3 will be
discussed first. The limiting cases can be stated:
for y =0 (no lateral conduction) the surface
must tend with time to an abrupt step; for
y — o the surface will tend to remain flat and
recede uniformly at a rate corresponding to the
average heat input (F = 1'S in this case). For
intermediate y, the surface tends to the shape of a
ramp which has a slope that appears to become
constant. The maximum slope of the surface is
plotted on Fig. 5 for this case and, incidentally,
compared with results obtained by the use of
the small-perturbation analysis.

The coordinates of Fig. 5 are scaled by certain
parameters of the problem and suggest an empiri-
cal correlation of the form.

78 1~ exp(—t/zo)

AF G7)

where
1

To~7

This figures includes several calculations for
different values of y. The form of (37) suggests
that other correlations may be obtained in
which S, is replaced by §, or a groove depth, AS.

The numerical results for y = 1 also show
that the ramp-like transition in the shape of the
surface moves towards the regions of high heat
input and the location of the *'shoulder” remains
nearly fixed (see Fig. 3). It follows that the total
amount of mass ablated during the period repre-
sented by the calculation is considerably less
than it would have been if there were no lateral
conduction. This can be understood in terms of a
more efficient utilization of the heat-sink capa-
city of the slab when the heat penetrating it
can be distributed laterally. Figure 5 shows this
by the difference function (&) which is defined by

& = [[Str=0) — S de. (38)

It is normalized by the square of the approxi-
mate dimensionless step height which would
result from ablation of a laterally nonconduct-
ing slab

AF

"= [T‘E]

(39)
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The approximation in this expression stems
from the fact that equation (39) neglects the
transient adjustment from the situation for
T < 0 to the heat input function for > 0.

These results suggest an apparently self-
preserving evolution of the ramp-shape. How-
true similarity in the recession history is im-
possible if only on the grounds of overall energy
conservation ; if the surface recession were self-
preserving, then the temperature distribution
within the solid would also be self-preserving,
and ¢ would be constant in time. The heat trans-
ferred to the slab in the region of shape transi-
tion is contained in a layer of thickness é and,
therefore is characterized by the product Hé.
H grows linearly with 7, so that the amount of
energy stored in the solid sink increases linearly
with 1. The mass deficiency, &, is proportional
to H?. Therefore, the difference between the total
energy stored in the slab and that which can be
stored in a self-preserving temperature field
grows as 1°.

We are forced to consider the apparent self-
similarity as an approximate characteristic of
the history of the evolution of the surface. It
seems that from an engineering standpoint this
information is useful, especially in view of the
remarkable accuracy of this approximation
during a reasonably significant interval -
throughout the following discussion we take
this attitude.

The periodic heat input (typical example
shown on Fig. 3) exhibits the same general trend.
Figure 6 is a plot of groove depth vs. time; an
insert in this figure shows the shape of the
“groove” after it has reached the apparently
stable depth. This shape is then also remarkably
stable so that over intervals of, typically, 10 t the
variation is within the plotting accuracy.

An interesting feature of the groove shapes is
the development of a much smaller radius of
curvature near the point of maximum heat input
than at the point of minimum heat input. It is
clear that this characteristic is necessary if a
stable shape is to occur, since the existence of a
stable surface requires that a large portion of the
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F1G. 5. Slope and mass-loss functions; infinite slab.

heat which is received near the region of maxi-
mum heat flux must be conducted laterally so
that the recession rate where the heat flux is
smaller can be increased. This, in turn, requires
temperature contours to have relatively small
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final forms.

radii of curvature in the region of maximum F.
Since the surface is an isotherm, its radius of
curvature must be small in that region.

The case corresponding to y = 10 and F,,,,
= 1-25 was studied rather extensively. The same
stable shape was achieved with two substantially
different starting conditions (see Fig. 6), one
which consisted of a flat initial surface and an
initial temperature distribution corresponding
to steady-state recession with F =1, and
another which was a curved surface having a
considerably greater radius of curvature at
& =0 than the stable shape and an initial
temperature distribution corresponding to
steady-state recession at the local value of F.
Also, calculations were performed with mesh
spacing and time steps varying by a factor of 2,
and resulted in differences of approximately
2 per cent in the depth of the groove.

A certain number of calculations resulted in
numerical instability in the region of the bottom
of the groove. This occurred for large values of
v and deep grooves (large S F/y); studies of the
stability problem confirm that the stability
criterion depends on the product of y2 and the
surface curvature and slope. Figure 6 includes
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only data for which no difficulty was en-
countered ; Fig. 7 gives this data and also data
for a number of cases where the calculation
proceeded only partly to the development of a
quasi-stable groove before they had to be
interrupted. For these cases we plot the time-
evolution of the maximum slope and depth of
the groove-like depression, again using the
observed empirical generalization expressed by
equation (37).
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F1G. 7. Correlation of slope, groove depth, and mass-loss
function, periodic heat flux.

Figure 7 also shows the mass-loss function, &,
for the periodic heat input and relatively short
times. For sufficiently small values of time, a
periodic heat input also results in a substantially
smaller mass-loss due to ablation when lateral
conduction is permitted. The long time results
show that the quasi-stable groove recedes with
approximately the recession rate corresponding
to the mean heat input (within 3 per cent). To
this level of accuracy the overall energy con-
servation conditions do not contradict the
possibility of developing a self-preserving state
in this case.

VI. CONCLUSIONS

The results presented here illustrate the effects
of lateral diffusion in the solid on the evolution
of the shape of its surface when it vaporizes,
under the action of a spatially nonuniform,
steady, radiant heating. Two typical distribu-
tions of heating were studied which are charac-
teristic of situations encountered in practice.

Diffusion of heat tends to redistribute the
energy required to preheat the solid to sublima-
tion temperature in such a way that the gradients
in the rate of sublimation of the surface are
smoothed out relative to the local gradients of
the heat input. In consequence, the shape of the
subliming surface is always smoother than if
lateral conduction were neglected (the locally
one-dimensional approximation). There appears
to be a tendency towards the development of an
equilibrium, whereupon the shape of the surface
remains constant to engineering accuracy. An
empirical correlation of these results was pro-
posed, and shown to hold remarkably well over
a relatively wide range of the variables. The
characteristic time-constant of the phenomenon
is the product of the characteristic depth of the
thermal layer in the subliming body and the
characteristic length describing the spatial varia-
tion in the heat input divided by the thermal
diffusivity of the solid. This form implies that
both lengths are of equal importance. The
amount by which the surface receded at a fixed
value of the characteristic time is proportional
to the length scale and to the magnitude of the
heat flux nonuniformity. This functional form
should provide a framework for the correlation
of experimental data.

A different view of the observed phenomenon
is this. If a given total heat input is distributed
nonuniformly over the surface, lateral conduc-
tion results in a more efficient utilization of the
heat-sink capacity of the solid and, at least
during an initial period which is long relative to
many practical situations, the total mass of
ablated material is significantly less than if the
same total heating were applied uniformly over
the surface. Note that a two-dimensional non-
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uniformity of heating in time and space (which
was not explicitly studied here) would amplify
this difference. These findings have interesting
consequences in relation to many problems. For
example, one problem which stimulated this
research is the melting of ice fields under the
influence of solar heating.

At small times, the surface recession rate is
determined by the local value of the heat flux.
The perturbation analysis provides an approxi-
mate method for computing the surface shape in
this regime, the limits of which are indicated in
part by comparisons between results of the
analysis and numerical computations.

It also shows that a heat flux perturbation
initially produces a recession rate which is
greater than that corresponding to the new total
heat flux.
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EVOLUTION DE FORME D'UNE SURFACE SUBLIMANTE SOUMISE A UN FLUX
THERMIQUE INSTABLE ET SPACIALEMENT NON UNIFORME

Résumé- Une étude comprenant une analyse des perturbations et des calculs numériques, a été menéc
sur la conduction thermique bidimensionnele et instationnaire dans un solide subissant un changement
de phase sur une face exposée. La solution d’ordre zéro & partir de laquelie est développée la méthode des
perturbations est la récession stable monodimensionnelle d’une plague solide en réponse & un flux de
chaleur uniforme. L’analyse a été faitc pour des petites valeurs de (8/6)% ou 8 est la longueur caractéristigue
de la distribution de température dans le solide et 4 ["échelle de longucur de la non-uniformité latérale
du flux thermique.

Une résolution analogue a celle des différences finies appliquée aux équations du probléeme est
programmee, pour obtenir les résultats relatifs a une large non-uniformité dans le flux de chaleur et dans
la forme de la surface. Des résultats sont présentés a titre d’exemple pour deux types d’alimentation
thermique: (a) I'un dans lequel la variation spatiale est sinusoidale et (b) I'autre qui consiste en deux
niveaux constants connectés par une transition en demi-onde cosinus. On obtient un bon accord entre les
prédictions de I’analyse de premicr ordre et les résultats du calcul numérique pour des temps courts. Pour
des valeurs du temps relativement grandes on trouve que les formes de surface calculées tendent a se
conserver elles-mémes. Dans le cas (a) les formes en relief tendent a étre indépendantes du temps, et dans
le cas (b) il y a une évolution vers une rampe rectiligne de pente constante. On trouve que la perte de
masse du solide est plus petite quand la plaque est soumise & un échauffement spacialement non-uniforme
que lorsqu’elle est chauffée uniformément avec Ja méme intensité moyenne (quand la conduction latérale
n’est pas négligée).

Pour un-échauffement donné, la perte de masse avec conduction latérale est toujours moindre ue
lorsque la conduction latérale est négligée. Une corrélation empirique des résultats numériques montre que
les pentes de surface et les profondeurs des sillons sont proportionnels & une échelle de longueur qui est
associée 4 la non-uniformité du flux thermique et 4 sa valeur. Le temps caractéristique pour I'apparition

des formes superficielles s’écrit (8b/a), ot « est la diffusivité thermique du solide.

FORMANDERUNG EINER SUBLIMIERENDEN FLACHE
Zusammenfassung—Es wurde eine Untersuchung der zweidimensionalen unstetigen Warmeleitung in
einem Feststoff mit Phasendnderung an den freien Oberflichen durchgefiihrt, und eine Stéranalyse und
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zahlenmdssige Berechnungen gemacht. Die Losung nullter Ordnung, aus der die Storanalyse entwickelt
wurde, liefert ein stetig eindimensionales Zuriickweichen einer Feststoffplatte als Reaktion auf eine
gleichformige Wiamezufuhr. Die Analyse wurde fiir kleine Werte (6/b)% durchgefiihrt, wobei & die charakter-
istische Lénge fiir die Temperaturverteilung im Feststoff ist und b ein Langenmass fiir die spater ungleich-
formige Wiarmestromdichte. Die bestimmenden Gleichungen werden nach einer Analogie der endlichen
Differenzen programmiert, um die Ergebnisse fiir eine grosse Ungleichférmigkeit von Wirmestromdichte
und Flichenform zu erhalten. Musterergebnisse werden fiir zwei Arten der Wirmezufuhr gegeben; (a)
fiir sinusformige, raumliche Verteilung, und b, fiir zwei konstante Niveaus verbunden durch einen halben
Kosinusbogen. Gute Ubereinstimmung ergab sich zwischen den analytischen Rechnungen erster Ordnung
und der numerischen Bestimmung fiir kieine Zeiten. Bei relativ langen Zeiten fand man, dass die berech-
neten Flachenformen selbsterhaltend wurden. Im Fall (a) wurden Rillenform und Rillentiefe
zeitunabhingig, im Fall (b) ergab sich eine Gerade mit konstanter Steigung. Der Massenverlust des
Feststoffs wurde kleiner, wenn die Platte einer rdumlich ungleichférmigen Beheizung ausgesetzt war, als
bei gleichférmiger Beheizung mit derselben mittleren Intensitiit (wenn man die spitere Warmeleitung
nicht vernachlissigt). Bei gegebener Beheizung war der Massenverlust mit seitlicher Ableitung immer
kleiner als ohne deren Beriicksichtigung.

Eine empirische Beziehung fiir die zahlenmassigen Ergebnisse zeigt, dass die Steigung der Fliche oder
die Rillentiefe einem Langenmass proportional sind, das auf die Ungleichformigkeit und die Grosse der
Wirmestromdichte bezogen ist. Die charakteristische Zeit fiir das Auftreten einer Flichenverdnderung ist

(db)a, wobei o die Temperaturleitzahl des Feststoffs ist.

PASBUTHE GOPMDLI CYBAUMUPYIOIEIT HIOBEPNXHOCTH HO{ JAENCTBUEM
HECTAHAOHAPHOTO HPOCTPAHCTBEHHO HEOJTHOPOTHOIO
TEILTOBOTIO HOTORA

AHHOTAUA—I[POBOANIIOCE HECTEI0BARUE JABYMepHOl HeCTalotapHoil TeNI0npoBooeTi
B TBEPAOM Tel1e NP (asnBOM NB3MCHEHI B PPAHIIEe, BETIOTAH QHWTHS PASTOReHIS B P, bl
ouneaennse pacuerbl. Hyoenodt woen pasiosmsenitit 8 paisl olIICHBACT VCTAHOBUBIIECC S
0AHOpOANOE VUAVHJeHie TBePIoll IVACTIHHLL HOL JIeHCTBIEM  OLHOPOIHOTO 1HOIBO L TCILTA .,
OTOT anAIs HpoBeleH LA 1efodbiuX suavenuil (8/6)2, rae B-XAPARTCPUCTHYCC KA L TITHA
A TPORUIST TEMHEPATY PO B THeP,LOM Ted e a T-HR 1T L HTHLL HTHOA0THH0T He0 U0 po o i
TEIIOBOTO 1HOTOKA.

G LET b0 HGAVHeHIS pesyALTATOR [L1H (0 AbIoll O IHOPOHOCTI KAk B TCILI0BOM HOTORE
Tak 1 B (hopMe NOBePXHOCTH 3AUPOTPAMMIPOBAH KOHCUHO-DABHOCTHBUL aHa10r 1exXo;Hoil
cucTeMsl ypasuenuii. llpegerasiiennl pesyabTaThl AJs ABYX BIIOB HOABOLA Tetda: (a) 1o
CHHYCOILE B (0) HO ABYM HPAMBIM, COUPHACHHBIM TIOJNTEPHOLOM KOCHHYCOUABL. B Cayaae
MAIBLEX BPEMEH NOAYYCHO XOpoliee COOTBOTCTRUC MEATY aHATITHYCCRUM pelleliey [lepBoro
HPUGIMAEHIL 1 HHCTeHHBIMY pesyabTatami. [ otnoenteabno  GONLIIMX  3nadeniii
Bpemenll Haiigeno, 4To pacceduranibie GopMbl HOBePXNOCTH caMocoXpatsioTes. B ocayvaae
(a) pesibedunie GOPMBLI 1 PAVOIHL CTPEMHTCH CTATL HEBABHCHMBIMIL OT BPEMCHIT, 4 B CayUae
(6) nabnoaeTes TEIIeHI K oGpasoBaitnio NpAMOil i HOCTosnnoro yiwona. Haiijeno,
H4TO HOTePH MACCDLl TBCPIO0 Tefa MOHBLIIe, KO IJaCTHHL HOABeDIKEHA HPOCTPAHCTBEHHO
HEOANOPOHONY HATPEBY, HeM eCL 01 HATPeBACTST 0HOpOAHO ¢ ;11011 1T TOl #e cpeiei
HHTEHCHBHOCTBIO  (CEU HPOOJLHASL  TCIRTONPOBOHOCTL He HrHopipyeTtea), [lpn annow
HArpeBe HOTEpst MACCLE P HPOAOALIOI TOITONPOBOTHOCTIL BCET, L MeUbINe, H4eM o1
HPOLOJIBHAS TEILTONPOBOHOCTL HC VUITHIBACTCS .

INMITNPIMECKAST KOPPeJSH HIETOBBIN PACHCTOR NOLABLIBACT, NTO HAKIOHLE HOBCPXHOCTN
I IVIVOIHBE peabeoB IpomopHHOILILHLE DTRAJE JGIHHDBL, CBABAHIoN ¢ HCOZHOPOHOCT IO
TONTOBONO HOTOKA 11 €00 Bednuinoii. (80) ‘e ABIACTCH XapakTepHeTHUeckIM BpeMeHey i

HOABIEHIT OUCPTAHIIL HOBEPXHOUTH, ¢=TeMIEPATY PONPOROAHOCTL TBEPIOIO TeJa,
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