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Abstract-An investigation of two-dimensional, unsteady heat conduction in a solid with phase change at 
an exposed boundary has been conducted, including a perturbation analysis and numerical computations. 
The zero-order solution from which the perturbation analysis was developed is the steady, one-dimensional 
recession of a solid slab in response to a uniform heat input. The analysis has been carried out for small values 
of (6/b)*, where 6 is the characteristic length for the temperature distribution in the solid, and b is the length 
scale of the lateral nonuniformity of the heat flux. 

A finite-difference analog of the governing equations was programmed, for the purpose of providing 
results for large nonuniformity in both heat flux and surface shape. Sample results are presented for two 
types of heat inputs: (a) one in which the spatial variation was sinusoidal. and (b) one which consisted of 
two constant levels connected by a half-wave cosine transition. Good agreement was obtained between 
predictions of the first-order analysis and results of the numerical computation for small times. For relatively 
large values of time, the computed surface shapes were found to become self-preserving. In case (a) groove 
shapes and depths tended to become time-independent, and in case (b), a straight ramp of constant slope 
tended to form. The mass loss of the solid was found to be smaller when the slab was subject to spatially 
uniform heating than when it was heated uniformly with the same average intensity (when lateral conduction 
was not neglected). For a given heating, the mass loss with lateral conduction was always less than when 
lateral conduction was neglected. 

An empirical correlation of the numerical results shows surface slopes or grooves depths to be propor- 
tional to a length scale which is associated with the nonuniformity in the heat flux, and its magnitude. 
The characteristic time for the appearance of surface features is (66)/ r, where r is the thermal diffusivity 

of the solid. 
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reference length based upon steady, 
one-dimensional recession, equation 

(39) ; 
time index ; 
thermal conductivity ; 
heat of sublimation ; 
lateral coordinate index ; 
maximum value of ni ; 
vertical coordinate index ; 
Laplace transform variable ; 
heat flux per unit area per unit time ; 
surface position coordinate ; 
dimensionless surface position co- 
ordinate, equation (8) ; 
dimensionless mass-loss function, 
equation (38) ; 
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dimensional temperature ; 
dimensional sublimation tempera- 
ture ; 
slab temperature for Y --f * ; 
dimensionless temperature, ,equation 

(8) : 
dimensionless temperature used in the 
numerical analog ; 
dimensionless temperature used in 
the numerical analog : 
lateral coordinate : 
vertical coordinate ; 
transformed vertical coordinate, 
equation (7); 
thermal diffusivity ; 
sublimation parameter, equation (8) ; 
thermal aspect ratio. equation (8); 
thermal penetration depth, equation 
(8); 
dimensionless vertical coordinate 
(Z/ S) ; 
dimensionless lateral coordinate (xib) ; 
dimensional time ; 
mass density; 
functions derived from solution of 
equation (18a). see equations (20) 
and (22) : 
dimensionless time variable, equation 
(8): 
dimensionless time increment ; 
dimensionless vertical distance incre- 
ment ; 
dimensionless lateral distance incre- 
ment. 

I. INTRODUCTION 

HEAT transfer to a body with phase change at the 
exposed boundaries (sometimes referred to as 
Stefan’s Problem) has attracted the attention of 
numerous investigators over the past century. 
Recently the development of ablative heat sinks 
for thermal protection of hypersonic vehicles 
has given the problem considerable impetus, 
but there are also other less publicized applica- 
tions of considerable interest. For instance, the 
problem of the melting of polar ice-caps was 
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one that stimulated the present study. 
The first important exact solution to a phase 

change problem was given by Neumann in 
1860 [I]. He considered the solidification of a 
semi-infinite slab existing initially in the liquid 
state at constant temperature to > 0. For all 
times H > 0, the exposed surface (Y = 0) was 
maintained at a temperature t = 0. and the 
location of the solid-liquid interface was de- 
termined as a function of time. The solution 
satisfying conditions for all time was found 
to be s(0) c ,,/(!I. Various other solutions have 
subsequently appeared in the literature and are 
discussed in the excellent reviews by Muehl- 
bauer and Sunderland [2], by Boley [3], and 
by Bankoff [4]. The special difficulty associated 
with the phase change problem is the non- 
linearity introduced by the existence of a moving 
boundary. This requires that special solutions 
be obtained for each different set of boundary 
conditions. These difficulties are compounded 
by the nonexistence of similarity conditions for 
situations of an arbitrary heat flux on the 
moving boundary or of an arbitrary initial 
temperature distribution within the body. 

Nearly all of the previous work has been 
done for one-dimensional cases where condi- 
tions are laterally uniform or where the influence 
of lateral temperature gradients and surface 
heat flux nonuniformities is neglected. The 
only two-dimensional treatment known to the 
authors is the analytic solution given by Boley 
and Sikarskie [5] for the initial sublimation 
rate of a semi-infinite strip under a spatially 
varying (Q(x) _ cos x) heat flux. The essential 
feature of their method of analysis is that it 
deals mathematically with a fictitious body. 
whose shape is unchanged and is identical with 
that of the body before any phase transformation 
occurs. The fictitious body is exposed to an 
imaginary heat flux whose magnitude is adjusted 
so that it satisfies the appropriate interface con- 
ditions. In this formulation the original boun- 
dary value problem is replaced by an ordinary 
integro-differential equation which was solved 
in series form. with results obtained for the 
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leading terms in the series. However, the surface 
recession history for long sublimation times and 
for realistic surface heat transfer distributions 
has not been examined. It is the objective of this 
effort to study surface recession histories when 
the incident heat flux is spatially nonuniform 
and nonsteady, and to evaluate the role of 
lateral conduction. 

II. FORMULATION OF THE PROBLEM 

The equation describing unsteady, two-di- 
mensional heat conduction in a body with 
temperature-independent physical properties is 

g=x(g+$). (1) 

This equation is to be solved subject to the 
following initial and boundary conditions. The 
initial temperature distribution within the body. 
and the initial shape of the surface are prescribed 

t(x, y3 O) = ti(x3 _Y) (24 

s(.Y, 0) = SAX). (‘W 

The initial recession rate must be consistent 
with the energy balance at the exposed boundary. 
Boundary conditions for the problem are 

t(s,y, 0) = t, as y -+ co Pa) 

(infinite slab in the direction normal to the 
surface) and 

at 
z+=O at s=+n 

(insulated lateral boundaries at x = Fn). An 
additional condition is obtained from an energy 
balance at the exposed surface, the simplest form 
of which is 

Qn(x, (3) = - k 2 + rhL, (4) 
s 

where Q,,(x, 13) is the component of heat flux 
normal to the local surface. For the sake of 
convenience, (4) is rewritten in terms of the 
incident heat flux per unit area and time, Q(x, /3), 

normal to a plane y = constant. 

P(% 0) = - k(- txs, + $J(Y=S(X,e, 

+ (1 + s;, pLS, (5) 

where subscripts denote differentiation. This 
relation models a radiant heat input independent 
of the instantaneous surface shape. If convective 
heat- and mass-transfer coupling were included, 
an additional term would be added accounting 
for the heat blockage effect introduced by the 
blowing at the gas-solid interface. Also, the 
surface shape would be coupled with the heat 
input function because of its influence on the 
nature of the boundary layer. 

Coupled with the energy balance (5) one 
must make a statement regarding the phase 
change kinetics. For simplicity, a fixed sublima- 
tion temperature is used here. This condition is 

S = 0 when t(x, s, 0) < t, 

and 

i 

(6) 

S > 0 when t(x, s, 0) = t,, 

where the magnitude of s is computed from (5) 
and t, is prescribed. 

Statement (6) together with relation (5) is 
sufficient to completely describe the boundary 
condition at the exposed moving surface. 

The preceding is a formulation in terms of 
fixed coordinates (x, y) wherein the exposed 
surface moves relative to the coordinate axes. 
Inherent in this formulation is the difficulty of 
applying boundary condition (5) at the a priori 

unknown location s(x, 0). In certain circum- 
stances this difficulty can be avoided by trans- 
forming to a coordinate system moving with 
the receding boundary. This type of transforma- 
tion in phase change problems was first intro- 
duced by Landau [6] for the case of one- 
dimensional conduction in a slab with uniform 
incident heat flux. In this spirit we introduce 
the coordinate transformation 

z = y - +, e), .x = x, (7) 

as illustrated in Fig. 1. It is to be emphasized, 
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however. that the difficulties associated with where subscripts denote differentiation, The 
the existence of a moving boundary will not be transformed boundary conditions are 

eliminated by working in the transformed ( Y. y) 
plane. The undesirable problem of applying a 

T(-. ~1. r) = 0 as r/ -+ x (lOa) 

boundary condition at an unknown position is and 

avoided at the expense of transferring the essen- 

tial nonlinearity of the problem directly to the 
Tt = 0 at < = i 8. (lob) 

governing partial differential equation for the the latter condition applying if the body is 
temperature field within the body. In view of bounded laterally by installed walls at = +t/‘. 

the numerical solutions to be obtained subse- Writing the surface boundary condition in terms 

quently, it was thought advisable to work in the of the transformed variables yields 

transformed (r, Z) plane rather than the (Y. 2‘) 
plane in order to avoid the complications which 

F(<. 5) = -/j[-7’2Srq + (1 + ;“S,2)7J,,,,, 

arise from the motion of a boundary across a + (1 + $s;) s,. (11) 

grid lattice. 
Coupled with this relation is the phase change 
law which transforms to 

S, = 0 when T(<. 0. 5) < 1 

and 

S, > 0 when T(t.0.s) = 1. 

(12) 

T(<,O.?) < 1. 

Iv tz The initial conditions consist of the specifi- 

FIG. I. Defimtions of coordinate \y%tems 
cation of an initial surface shape and tempera- 
ture field and application of the surface boun- 
dary condition (11) at T = 0. The scaling 

Applying the transformation (7) to the fore- quantities I, - to and Q. are introduced to 

going set of equations and simultaneously make the functions T and F of order unity. 
introducing the nondimensional quantities The quantity 6 defined in (8) is a measure of 

the thermal penetration depth resulting from a 
uniform steady heat input rate of magnitude Q. 
applied at the surface of a body with physical 
properties 11. c1 and L. and is obtained from the 
solution for steady. one-dimensional recession. 

and 8 = !!% 
The quantity h is a length characterizing the 

0 . 
(Xa) lateral scale of the spatial nonuniformity in the 

-0 incident heat flux. The use ofthese two parameters 

with the heat input represented by to nondimensionalize the normal and lateral 

0 
derivatives, respectively, has essentially stretched 

--~ = F(& r). 
0” 

(8b) the respective coordinates in the (<, q) plane 
such that gradients of the dependent variables 

the partial differential equation ( I ) becomes are of equal importance. As a consequence of 

T, = (S, - ;%,<)T, + (I + ;t2Sf) T,, 
the use of two characteristic lengths in the non- 
dimensionalization. a thermal aspect-ratio para- 

+ i"(T,, - 2S<T<,J. (9) meter 7 appears in the equations. It is clear that 
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if the spatial gradients of the applied heat flux 
(scaled by 6) are of the same order as the thermal 
penetration depth (scaled by 6) that is, when y is 
of order unity, lateral conduction is significant 
and cannot be neglected in determining the 
surface recession rate. 

Because of the nonlinear nature of equation (9) 
and since there exists no similarity variable to 
reduce it to an ordinary differential equation, 
two methods of solution have been utilized. 
The first is a perturbation analysis. The second 
approach is a finite-difference solution of the 
problem which was used to obtain numerical 
solutions for several different sets of initial and 
boundary conditions. 

III. PERTURBATION ANALYSIS 

When the incident heat flux is nearly uniform 
over the surface of the body, the thermal aspect 
ratio ‘J becomes very small. The parameter y 
appears in the equations as “u,‘. This suggests an 
expansion of variables in terms of this small 
parameter : 

T = T”‘(g,z) + y2Tc1’(c rj T) > 5 

+ fY’(1’, q. e) + . , 

s = S’@(r) + y2S”‘(&T) 

+ y4S2’(<. r) + . , and 

F = 1 + .i2F”‘({, 2) + “u,4F’2’(& r) + . . . . (13) 

For simplicity, we restrict the analysis to the 
class of problems for which the surface is initially 
flat, S(0) = S,(if. 0) = S,,(<, 0) = 0 and all higher 
order terms in IT: S and F, are zero for 7 < 0. 
Physically, this means that for z < 0 there is 
steady recession of a slab in response to a 
spatially uniform, steady heat input. At T = 0, 
a spatially varying perturbation is added to the 
heat input function. Substituting the expansions 
for ?; S and F, into the differential equation (9) 
and the initial and boundary conditions given in 
equations (lo), (1 la) and (12) terms of zero order 
yield 

T’o’ _ S’O’T’O’ _ T’o’ = 0. 

s’:‘(o) =Io, 
9 VI 

T’O)(q, z) = 0 as ij + cc, 

T’O’(O, r) = 1. and 

1 = -/IT!,“‘(O) + S;“‘. 

The zero-order solution is 

T’O’ = exp (- Si”q) 

with 

1 
SW = __- 

7 
/I+ 1’ 

Terms of order y2 yield 

T”’ _ 7 
S’O’T”’ _ T”’ = S”‘T’O’ 

T ? V’ r 4’ 

T”‘(q, 0) = T”‘(0, r) = T”‘(w, T) 

= S”‘(O) = 0, and 

F”‘(<. t) = - flT;‘(O) + S’,“. 

Terms of order y4 yield 

T’2’ _ S’O’T’2’ _ 74’ = S”‘T”’ 
I T 9 49 r v 

+ ($2’ _ ‘$1’ T’o’ _ T$‘. r d 9 

T”‘(q. 0) = T’2’(0, z) = T’2’(cc, T) 

= S”‘(O) = 0, and 

F’2’ = +7’;2’ + S’,“, 

(14) 

(15) 

(16a) 

(174 

(17b) 

(17c) 

The Laplace transform of equations (16) (trans- 
formed variables are denoted by an asterisk) 
after substitution for T$’ from (15) is 

pT”‘* _ S’O’T”‘* _ T”‘* 

z S:“*Si” ex”,” ( - S!O’r]). and (18a) 

F”‘* = -flT;“*(()) + Sb”*, (18b) 

The solution for the transformed 
field. which may be obtained 
function techniques, is 

temperature 
by Green’s 

P 

x [exp (- i.,ql - exp ( - S’O’rl)] T * (19) 

where 
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The boundary condition corresponding to the 
energy balance at the surface has not yet been 
satisfied. It is possible to solve an inverse prob- 
lem by specifying Sjl) and determining the 
corresponding value of F(l)* from equation 
(lgb). A direct solution which is valid for small 
values of time can be obtained by differentiating 
equation (19) and substituting into (18b), which 
gives 

(21) 

where 

x, = ” _F+&+T). (22) 

The first-order heat input function F”’ may 
be expanded as a power series in r. 

F”’ = Fb”H(z) + F\“z + F\‘b2 + , (23) 

where H(z) is the Heaviside unit function. If we 
substitute the Laplace transform of this expan- 
sion into equation (21) and expand the result as 
a power series in p- ‘, we have 

p -3/2 S(l)* = F;‘p-’ _ FL”--_ 
r 

p+P 

,@(fl +i)+ F”’ p-2 ___ 

(P+l)2 l 1 p -__ 
[j + 1 

W + P + d) + F”’ 
x -(B-t 1)2 1 P 1 i - 5:2 

+ 

B 

(B + 1)2 

x 
I 

(24) 

This expression can be inverted term-by-term 
yielding 

$1’ = J-b” - ~ 
r 

B(B + 4) 
(B + 1)2 

+ 2F’,” 
z2 
-- + O(r5’2). 
2 

(25) 

The restriction of the first-order solution to 
small values of z [equation (23)] is not particu- 
larly severe, since for most classes of problems 
this is already implied by the requirement 
that the perturbation of the initial surface shape 
be small [equation (13)]. For z approaching 
zero, the surface recession rate is given to order 
y2 by 

s 
7 

= 1 + y2Fb” + /3y2Fb” 

B+l P+l 
+ 0(r1’2). (26) 

The first term in equation (26) is exactly the 
steady-state recession rate corresponding to the 
perturbed heat input. S, is thus initially larger 
than the steady-state value. The conduction 
process associated with a characteristic time is 
long compared to the instantaneous increase in 
F at r = 0. As a result, conduction initially has 
no effect, and the increased heat input is 
reflected entirely in vaporization of the surface 
material. 

It is interesting to note that the problem which 
we have posed, to first order in yzY corresponds 
to a one-dimensional unsteady problem. There- 
fore, the results can be applied to a situation in 
uhich the initial surface is not flat by adding 
S,(t) to surface shapes obtained by integrating 

(25). 
It is possible to use the solution for Si” to 

obtain a first-order solution for the temperature 
field. If equation (24) is substituted into equation 
(19) and the result is expanded in a power series 
in p-’ and inverted term-by-term, the first few 
terms in the expansion for the temperature tield 
are 

T,rj _ Fdr’exp [-rli2(P + 1)l - 
B+l 
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- exp I. - 11/2(P + 1)l 

4 r3’2 
x5$ +... 

I 1 
. (27) 

An inverse solution for the temperature field 
corresponding to a constant value of Sj” and 
the corresponding value of the heat input 
function, may be obtained in a similar manner 
using equations (19) and (21). The results are 

Ttl) = Wexp h/W + 111 
P+l K ) 

t + f 

x erfc(+) - qJ(i)exp(-n’;hi: 

m 

II 
312 

+ CP + 1J2 s 

erfc [ dc - 

9/2Jr 

z exp [ - r]/2(p + 1) + . . 1 (28) 
and 

F~~~=s:~fl+&&&2T 

+ P 2 + o(T5’2) 
6(/I + 1)3 JJt 1 

. (29) 

In order to examine the manner in which the 
<-derivatives influence the solution, the expres- 
sion for Ft2’ was found for the case when Si” 
and Si2’ are constant for z > 0. Using the tech- 
nique already outlined in the preceding, the 
solution thus obtained is 

4 s(l)* S&' 

2 I’+1)2+1 >I 23~2 

‘..’ 
(30) 

As expected, the second-order solution is similar 
in character to the first-order solution. Perhaps 
the most interesting aspect of this result is 
that the <-derivatives appear only in terms of 
order y4. 

0 05 IO 15 2-O 
T 

FIG. 2. Comparison of first-order analysis and numerical 
computation. 

Figure 2 shows a comparison between calcu- 
lations using the first-order solution to terms 
in z2, [see equation (25)] and results of numerical 
integrations of the full equations. The calcula- 
tions were performed for a sinusoidal heat input 
distribution to a two-dimensional conducting 
slab. In case A, the perturbation was applied as a 
step-function in z, and in case B, the amplitude 
of the perturbation was a linear function of r. 
In each case, a wavy surface developed, with the 
bottom of a groove corresponding to the maxi- 
mum and a ridge to the minimum value of F. 
The ordinate AS, is the groove depth, or 
Smax-Smi~ The value of the parameter /L which 
is the ratio of the energy absorbed in heating the 
material to the sublimation temperature to the 
heat of vaporization, is 0.5 for this example, and 
for all of the subsequent calculations. This 
value is representative of the larger values of fi 
which would be encountered in physical situa- 
tions. 
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Numerical results are shown for i: = 0.5 and 
for 7 = 0 (no lateral conduction) for comparison 
with the predictions of the analysis. The range 
of validity of the time-expansion to rz can be 
evaluated by comparing the results of the 
analysis with the numerical results for 1: = 0. 
The use of the first-order solution is equivalent 
to assuming that the recession is locally one- 
dimensional and unsteady, corresponding to the 
local value of F. This situation is achieved in the 
numerical calculation by setting 7 = 0. Lateral 
conduction effects during the initial time period 
considered may be evaluated by comparing 
the numerical results for y = 0 and 7 = 0.5. 

IV. NUMERICAL METHOD 

In order to obtain results in which effects of 
lateral conduction are of first-order importance. 
a numerical method of solution was constructed. 
The particular finite difference analog of the 
governing equations used here is an adaption 
of a method which was first employed by Clark 

L. G. REDEKOPP and R. ROSEW 

and Barakat [7] for a linear boundary value 
problem with stationary boundaries. The method 
uses a multi-level finite-difference representa- 
tion of the differential equation, where the 
temperature is given by 

T;,, = ;W;,,, + V/,,,,. (31) 

The superscript j refers to the time level, and the 
subscripts, PH and ~1, identify the mesh point. 
The VA,,, and Vi,, each satisfies the complete 
difference equation and boundary conditions. 
but the calculations to determine Vi n begin at 
HI = n = 0 and proceed in the direction of in- 
creasing ni and n, and the calculations to deter- 
mine Vi,,, begin at M. N. the maximum values 
of w and II, and proceed in the direction of 
decreasing HI and n. The averaging of Ui,, and 
Vi, n to obtain Ti, n is done in order to obtain a 
high level of accuracy. The finite-difference 
representations of the derivatives determine 
the stability properties of the system. Examples 
of difference equations of the L’ part of the tem- 
perature field are included here as follows. 

and 

- uc:,,l_, - ucl, ,, + UK1, n_l 

A<-Ar_ 

(32) 
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The notation A<+ refers to the mesh spacing 
between no and M + 1; At_ refers to the spacing 
between nl and m - 1. The values of Aq+ and 
A+ are determined in the same manner. 
These expressions were substituted into the 
differential equation (9) and solved for Uj,t.‘, 
explicitly. The space and time derivatives of 
the surface position were evaluated following 
the same scheme. The quantity Sz ’ is computed 
from the boundary condition (11) at the time 
level j. In difference form, (11) becomes 

sj+ 1 = si + AzFr ’ 
m (1 + ,J2SZ)’ Tm 

/Jr’(S,)~ Ar 
- (1 + y2S52)j&f tTk*l,O - Tk,O)’ (33) 

The quantities A5 * and Ti, i, o are used de- 
pending on whether S, 5 0. The quantity 
Av, is the vertical grid spacing between the 
surface (n = 0) and the first lattice point the 
body (,n = 1). 

Coupled with (33) is the phase change condi- 
tion of (12) which, in difference form, becomes 

Sj+‘=Si when TAO m I <1 
and (34) 

Sz’>Ssg when T,,,=l. 

Essentially the same finite difference approxi- 
mation was used for the V part of the tempera- 
ture field. 

Two boundary conditions were investigated. 
For an insulated boundary at no = 0 and m = M 
we require that the dependent variables be 
symmetric about the lateral positions m = 0 
and nl = M. For a body which is infinite in the 
lateral direction, the dependent variables are 
extrapolated parabolically. This is accomplished 
by writing 

xl 

along 11~ = 0 and 

65, XL,,,, = XL,” 1 + ~ ( > AC’_ 
- x&Z 

(35b) 

along m = M, where X represents T or S. To 
satisfy the condition of infiniteness in the rl 
direction the values of I’ at n = N + 1 are 
determined from ‘(35b) where Aq+ and Aq_ 
replace At+ and A< _, respectively. Additionally, 
in order to initiate the numerical calculation at 
any time step (j + l), the boundary values Uj’l 
at nl = - 1 and vj+l at rn = M + 1 and also 
along n = N + 1 must be known. These quanti- 
ties are obtained by extrapolating 
time using the expression 

xj+ 1 = 2x’ 
m,n m,n 

_ xj-1. 
m,n 

This computational procedure 
and unconditionally stable when 

forward in 

(36) 

is explicit 
applied to 

the conventional heat conduction equation, at 
least for several common types of boundary 
conditions [7]. The stability of the present 
method and of a more conventional explicit 
method (in which the time derivatives are 
approximated by a forward difference ratio and 
the space derivatives are approximated by 
central difference ratios evaluated at the previous 
time step) were studied by the method of Von 
Neumann, which is described by Richtmyer [8]. 
The choice of stable grid spacing and time step 
were found to depend upon y, the surface 
recession velocity, surface slope, and surface 
curvature. Large values of any of these quantities 
would tend to cause instability. The maximum 
time step corresponding to stable computation 
for the conventional analog was predicted to be 
very small, implying prohibitively long compu- 
tation times. The analysis indicated that the 
stability of the method of Clark and Barakat 
would be much less sensitive to the choice of 
time step, and that a substantially larger time 
step could be used with this method than could 
be used with the conventional one. 

The finite difference formulation of the prob- 
lem was programmed in Fortran IV, and com- 
putations were performed on the IBM 360 
Model 75 and Model 91 of the UCLA Campus 
Computing Network. 

Several one-dimensional, steady-state com- 
putations were made as check-out cases. With a 
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mesh spacing, Aq, of 0.1, a maximum q of 6.0, 
and time steps, Ar, of 000375-0.09, the compu- 
ted value of the recession rate remained within 1 
per cent of the exact solution for runs of lOCL-300 
time steps. The error did not show a tendency 
to increase with time. 

V. DISCUSSION OF RESULTS 

The numerical program is very flexible and 
capable of accepting a wide variety of steady 
or unsteady heat flux distributions, arbitrary 
initial shapes of the ablating surface, and pre- 
heat conditions. The results presented herein 
pertain to a special situation which was selected 
because it illustrates the influence of lateral 
conduction on the problem in a relatively 
simple and straightforward manner. 

In all cases the initial surface is flat and the 
temperature distribution in the (semi-infinite) 
slab corresponds to steady-state ablation under 
the influence of a uniform heat input (F = 1). 
These initial conditions exclude the transient 
period of preheating the surface up to ablation 
temperature. At time t = 0, the heat input is 
impulsively changed to a prescribed one-dimen- 
sional distribution and remains fixed thereafter. 
Thus the heating is steady (for T > 0) but spatially 
nonuniform. while the surface recession is. 
in general, both unsteady and nonuniform. 
The heat input function prescribes the energy 
input per unit projected area, not per unit actual 
area of the surface; as mentioned before, this 
situation corresponds to radiation. 

Two heat input distributions were investi- 
gated. The first one is a cosinusoidal transition 
between two constant levels. Figure 3 shows a 
typical calculated history of recession of the 
ablating surface for a case in which y = 1 com- 
pared to the case in which y = 0 (no lateral con- 
duction). The second heat input distribution is 
sinusoidal, for which typical surface recession 
histories are shown in Fig. 4. It is clear from 
these figures that an increase in lateral diffusion 
of heat results in smoothing out the shape of the 
receding surface. 

, 
I - 

2 

2- 3 

4 
31 

5 

4- 6 

7 

- Y=i 
--- y;o 

I 

/ 

/ 1 , / 

0 I2 --;_--;__’ 6 7 8 9 IO 

FIG. 3. Shape evolution of an infinite clab subjected to a 
two-level heat flux. 
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The situation illustrated in Fig. 3 will be 

discussed first. The limiting cases can be stated : 
for y = 0 (no lateral conduction) the surface 
must tend with time t.o an abrupt step; for 
y --, CC the surface will tend to remain flat and 
recede uniformly at a rate corresponding to the 
average heat input (F = 1.5 in this case). For 
intermediate y, the surface tends to the shape of a 
ramp which has a slope that appears to become 
constant. The maximum slope of the surface is 
plotted on Fig. 5 for this case and, incidentally, 
compared with results obtained by the use of 
the small-perturbation analysis. 

The coordinates of Fig. 5 are scaled by certain 
parameters of the problem and suggest an empiri- 
cal correlation of the form. 

YS, - - 1 - exp (-zjz,), 
AF 

(37) 

where 
ro ,_ y -1 

This figures includes several calculations for 
different values of y. The form of (37) suggests 
that other correlations may be obtained in 
which S, is replaced by S, or a groove depth, AS. 

The numerical results for y = 1 also show 
that the ramp-like transition in the shape of the 
surface moves towards the regions of high heat 
input and the location of the ‘*shoulder” remains 
nearly fixed (see Fig. 3). It follows that the total 
amount of mass ablated during the period repre- 
sented by the calculation is considerably less 
than it would have been if there were no lateral 
conduction. This can be understood in terms of a 
more efficient utilization of the heat-sink capa- 
city of the slab when the heat penetrating it 
can be distributed laterally. Figure 5 shows this 
by the difference function (Y) which is defined by 

9 = .F [S(Y = 0) - WI dt. (38) 

It is normalized by the square of the approxi- 
mate dimensionless step height which would 
result from ablation of a laterally nonconduct- 
ing slab 

AF 

H= 1+B r. [ 1 (39) 

The approximation in this expression stems 
from the fact that equation (39) neglects the 
transient adjustment from the situation for 
z < 0 to the heat input function for r > 0. 

These results suggest an apparently self- 
preserving evolution of the ramp-shape. How- 
true similarity in the recession history is im- 
possible if only on the grounds of overall energy 
conservation ; if the surface recession were self- 
preserving, then the temperature distribution 
within the solid would also be self-preserving. 
and 6 would be constant in time. The heat trans- 
ferred to the slab in the region of shape transi- 
tion is contained in a layer of thickness 6 and, 
therefore is characterized by the product H6. 
If grows linearly with z, so that the amount of 
energy stored in the solid sink increases linearly 
with z. The mass deficiency, Y, is proportional 
to Hz. Therefore, the difference between the total 
energy stored in the slab and that which can be 
stored in a self-preserving temperature field 
grows as r2. 

We are forced to consider the apparent self- 
similarity as an approximate characteristic of 
the history of the evolution of the surface. It 
seems that from an engineering standpoint this 
information is useful, especially in view of the 
remarkable accuracy of this approximation 
during a reasonably significant interval --- 
throughout the following discussion we take 
this attitude. 

The periodic heat input (typical example 
shown on Fig. 3) exhibits the same general trend. 
Figure 6 is a plot of groove depth vs. time ; an 
insert in this figure shows the shape of the 
“groove” after it has reached the apparently 
stable depth. This shape is then also remarkably 
stable so that over intervals of, typically, 10 z the 
variation is within the plotting accuracy. 

An interesting feature of the groove shapes is 
the development of a much smaller radius of 
curvature near the point of maximum heat input 
than at the point of minimum heat input. It is 
clear that this characteristic is necessary if a 
stable shape is to occur, since the existence of a 
stable surface requires that a large portion of the 
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FIG. 5. Slope and mass-loss functions: infinite slab. 

heat which is received near the region of maxi- 
mum heat flux must be conducted laterally so 
that the recession rate where the heat flux is 
smaller can be increased. This, in turn, requires 
temperature contours to have relatively small 
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F~ti. 6. Stable groove shapes; groove depth histories and 
final forms. 

radii of curvature in the region of maximum F. 
Since the surface is an isotherm, its radius of 
curvature must be small in that region. 

The case corresponding to y = 1.0 and F,,, 
= 1.25 was studied rather extensively. The same 
stable shape was achieved with two substantially 
different starting conditions (see Fig. 6) one 
which consisted of a flat initial surface and an 
initial temperature distribution corresponding 
to steady-state recession with F = 1, and 
another which was a curved surface having a 
considerably greater radius of curvature at 
5 = 0 than the stable shape and an initial 
temperature distribution corresponding to 
steady-state recession at the local value of F. 
Also, calculations were performed with mesh 
spacing and time steps varying by a factor of 2, 
and resulted in differences of approximately 
2 per cent in the depth of the groove. 

A certain number of calculations resulted in 
numerical instability in the region of the bottom 
of the groove. This occurred for large values of 
;, and deep grooves (large YF/y); studies of the 
stability problem confirm that the stability 
criterion depends on the product of y* and the 
surface curvature and slope. Figure 6 includes 



SHAPE EVOLUTION OF A SURFACE 685 

only data for which no difficulty was en- 
countered; Fig. 7 gives this data and also data 
for a number of cases where the calculation 
proceeded only partly to the development of a 
quasi-stable groove before they had to be 
interrupted. For these cases we plot the time- 
evolution of the maximum slope and depth of 
the groove-like depression, again using the 
observed empirical generalization expressed by 
equation (37). 
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FIG. 7. Correlation of slope, groove depth, and mass-loss 
function, periodic heat flux. 

Figure 7 also shows the mass-loss function, Y, 
for the periodic heat input and relatively short 
times. For sufficiently small values of time, a 
periodic heat input also results in a substantially 
smaller mass-loss due to ablation when lateral 
conduction is permitted. The long time results 
show that the quasi-stable groove recedes with 
approximately the recession rate corresponding 
to the mean heat input (within 3 per cent). To 
this level of accuracy the overall energy con- 
servation conditions do not contradict the 
possibility of developing a self-preserving state 
in this case. 

VI. CONCLUSIONS 

The results presented here illustrate the effects 
of lateral diffusion in the solid on the evolution 
of the shape of its surface when it vaporizes, 
under the action of a spatially nonuniform, 
steady, radiant heating. Two typical distribu- 
tions of heating were studied which are charac- 
teristic of situations encountered in practice. 

Diffusion of heat tends to redistribute the 
energy required to preheat the solid to sublima- 
tion temperature in such a way that the gradients 
in the rate of sublimation of the surface are 
smoothed out relative to the local gradients of 
the heat input. In consequence, the shape of the 
subliming surface is always smoother than if 
lateral conduction were neglected (the locally 
one-dimensional approximation). There appears 
to be a tendency towards the development of an 
equilibrium, whereupon the shape of the surface 
remains constant to engineering accuracy. An 
empirical correlation of these results was pro- 
posed, and shown to hold remarkably well over 
a relatively wide range of the variables. The 
characteristic time-constant of the phenomenon 
is the product of the characteristic depth of the 
thermal layer in the subliming body and the 
characteristic length describing the spatial varia- 
tion in the heat input divided by the thermal 
diffusivity of the solid. This form implies that 
both lengths are of equal importance. The 
amount by which the surface receded at a fixed 
value of the characteristic time is proportional 
to the length scale and to the magnitude of the 
heat flux nonuniformity. This functional form 
should provide a framework for the correlation 
of experimental data. 

A different view of the observed phenomenon 
is this. If a given total heat input is distributed 
nonuniformly over the surface, lateral conduc- 
tion results in a more efficient utilization of the 
heat-sink capacity of the solid and, at least 
during an initial period which is long relative to 
many practical situations, the total mass of 
ablated material is significantly less than if the 
same total heating were applied uniformly over 
the surface. Note that a two-dimensional non- 
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uniformity of heating in time and space (which 
was not explicitly studied here) would amplify 
this difference. These findings have interesting 
consequences in relation to many problems. For 
example, one problem which stimulated this 
research is the melting of ice fields under the 
influence of solar heating. 
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EVOLUTION DE FORME D’UNE SURFACE SUBLIMANTE SOUMISE br UN FLUX 
THERMIQUE INSTABLE ET SPACIALEMENT NON IJNIFORME 

RtsumP- Une Ctude comprenant une analyse des perturbations et dec calculs num&iqueu. a it& men& 
sur la conduction thermique bidimensionnele et instationnaire dans un solide subissant un changement 
de phase sur une face exposee. La solution d’ordre z&o 8 partir de laquelle est dtveloppee la mtthode des 
perturbations ent la recession stable monodimensionnelle d’une plaque solide en rkponse k un flux de 
chaleur uniforme. L’analyse a ttC faitc pour des petites valeurs de (6/h)” oi F est la lonpueur caractiristique 
de la distribution de tempkrature dam le solide et h I’&chelle de lonpucur de la non-uniformitC lattrale 
du flux thermique. 

Une r&olution analoguc & cellc des diffirenccs finies appliquke aux equations du problkme est 
programmie, pour obtenir les resultats relatifs g une large non-uniformitt dans le flux de chaleur et dans 
la forme de la surface. Des rtsultats sent prisentt-s B titre d’exemplc pour deux types d’alimentation 
thermiyue: (a) I’un dans lequel la variation spatiale est sinusoidale et (b) I’autre qui consiste en deux 
niveaux constants connect&s par une transition en demi-onde corinus. On obtient un bon accord entrc len 
prkdictions de I’analyse de premier ordre et les rCsultats du calcul numkrique pour des temps courts. Pour 
des valeurs du temps relativement grandes on trouve que les formes de surface calcultes tendent a se 
conserver elles-m&mes. Dans le cas (a) les formes en relief tendent g itre indtpendantes du temps, et dans 
le cas (b) il y a une tvolution vers une rampe rectiligne de pente constante. On trouve que la perte de 
masse du solide est plus petite quand la plaque est houmise g un Cchauffement spacialement non-uniforme 
que lorsqu’elle est chauffke uniformCment avec la mEme intensitt moyenne (quand la conduction laterale 
n’est pas n&Ii&). 

Pour Ira&hanffement donne, la perte de masse avec conduction IatCrale eat toujours moindre que 
lorsque la conduction IatCrale est n&ligCe. Une correlation empirique des rksultats numkriques montre que 
les pentes de surface et les profondeurs des sillons sont proportionnels .?t une Cchelle de longueur qui est 
associke B la non-uniformit& du flux thermique et g sa valeur. Le temps caractkristique pour I’apparition 

des formes superficielles s’bcrit @h/l). 00 ix est la diffusivitC thermiyue du solide. 

FORMiiNDERUNG EINER SUBLIMIERENDEN FL;iCHE 

Zusammenfassung--Es wurde eine Untersuchung der zweidimensionalen unstetlgen Warmeteltung m 
einem Feststoff mit Phaseninderung an den freien Oberfllchen durchgefiihrt, und eine Stiiranalyse und 
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zahlenmlssige Berechnungen gemacht. Die Lasung nullter Ordnung, aus der die Stijranalyse entwickelt 
wurde, liefert ein stetig eindimensionales Zuriickweichen einer Feststoffplatte als Reaktion auf eine 
gleichfijrmige WLmezufuhr. Die Analyse wurde fiir kleine Werte (S/b)* durchgeftihrt, wobei 6 die charakter- 
istische Llnge fiir die Temperaturverteilung im Feststoff ist und b ein LLngenmass fiir die splter ungleich- 
f6rmige WLrmestromdichte. Die bestimmenden Gleichungen werden nach emer Analogie der endhchen 
Differenzen programmiert, urn die Ergebnisse fiir eine grosse Ungleichfarmigkeit von Wlrmestromdichte 
und Fl%chenform zu erhalten. Musterergebnisse werden fiir zwei Arten der Wlrmezufuhr gegeben; (a) 
ftir sinusfijrmige, rgumliche Verteilung, und b, fiir zwei konstante Niveaus verbunden durch einen halben 
Kosinusbogen. Gute ubereinstimmung ergab sich zwischen den analytischen Rechnungen erster Ordnung 
und der numerischen Bestimmung fiir kleine Zeiten. Bei relativ langen Zeiten fand man, dass die berech- 
neten FlLhenformen selbsterhaltend wurden. Im Fall (a) wurden Rillenform und Rillentiefe 
zeitunabhiingig, im Fall (b) ergab sich eine Gerade mit konstanter Steigung. Der Massenverlust des 
Feststoffs wurde kleiner, wenn die Platte einer rlumlich ungleichfiirmigen Beheizung ausgesetjt war. als 
bei gleichfarmiger Beheizung mit derselben mittleren Intensitst (wenn man die spLtere Wirmeleitung 
nicht vernachlissigt). Bei gegebener Beheizung war der Massenverlust mit seitlicher Ableitung immer 
kleiner als ohne deren Beriicksichtigung. 

Eine empirische Beziehung fiir die zahlenmassigen Ergebnisse zeigt, dass die Steigung der Fllche oder 
die Rillentiefe einem LLngenmass proportional sind, das auf die Ungleichfiirmigkeit und die G&se der 
WLrmestromdichte bezogen ist. Die charakteristische Zeit fiir das Auftreten einer Fl%chenverHnderung ist 

(6b)a, wobei a die Temperaturleitzahl des Feststoffs ist. 


